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NASA TT F-lJ9612 

INVESTIGATION O F  ORDINARY WAVES I N  A CKEW, 
GOLDBERGER, AND LOW APPROXIMATION 

V. B. Baranov 

ABSTFUCT: The Chew, Goldberger, and Low hydrodynamic equations 
f o r  co l l i s ion le s s  plasma are used t o  invest igate  ordinary waves 
( o r  Riemann waves). The in t eg ra l  curve f i e l d  f o r  fast and slow 
magneto-sonic waves is invest igated i n  de t a i l .  I t  i s  shown 
t h a t  i n  a fast magneto-sonic wave the  magnetic f i e l d  increases  
with increase i n  density, j u s t  a s  is  the  case i n  magnetohydro- 
dynamics with i so t rop ic  pressure. The s l o w  magneto-sonic wave 
has  a region i n  which t h e  magnetic f i e l d  drops t o  t he  compression 
wave, as w e l l  as an anomalous region i n  which t h e  sign of the  
der ivat ive changes. 

tendency t o  f l i p  i n  ce r t a in  special  cases (low pressures and 
propagation of t h e  wave almost perpendicular t o  the  magnetic 
f i e l d .  

It is shown t h a t  fast and slow magneto-sonic waves have a 

Many problems of space and laboratory physics reduce t o  the  need t o  invest i -  L2 
gate those cha rac t e r i s t i c  plasma motions f o r  which t h e  length of the  change i n  

thG parameters is small as compared with the . l fng th  o f  t he  free path o f  t h e  

charged pa r t i c l e s ,  but l a r g e  a s  compared with t h e i r  Larmor radius.  Chew, 

Goldberger, and Low [l] have shown t h a t  i n  t h i s  case t h e  behavior of t h e  plasma 

can be described by a system of magnetohydrodynamic equations with anisotropic  

pressures. 

Reference [Z] used these equations t o  make a de ta i led  analysis  o f  t h e  

prbpagation of  low .amplitude waves i n  a co l l i s ion le s s  plasma, and reference 

[3] invest igated ordinary waves i n  plasma; an example of nonlinear waves, 

assuming t h a t  t h e  longitudinal and transverse pressures (p  and p ) w e r e  small 

compared with B /&IT, where B is the  magnetic f i e l d  induction vector. 

paper is devoted t o  the  invest igat ion of ordinary waves  i n  plasma within t h e  

Chew, Goldberger, and Low approximation, and without l imi ta t ions  as t o  the  

hydrodynamic parameters. The shapes of t h e  in t eg ra l  curves f o r  slow and f a s t  

magneto-sonic waves are obtained. It is  proven t h a t  these waves have a 

tendency t o  f l i p  i n  ce r t a in  l i m i t  cases. The ana lys i s  f o r  fast waves coincides, 

-3 I I  1 2 This 

* Numbers i n  t h e  margin ind ica te  pagination i n  t h e  foreign t ex t .  
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and €or  slow waves does not,  with t h e  r e s u l t s  i n  reference [3] i n  t h e  l i m i t  

case f o r  low pressures. 

1. Equations f o r  Ordinary Waves L4 

The set  of magnetohy'drodynahic equations i n  t h e  Chew, Goldberger, and Low 

approximation is i n  t h e  form (see [&I7 f o r  example) 

Here, P is t h e  density,  
-B 
v is the  m e a n  veloci ty ,  

p.,, and p 

-9 is t h e  stress tensor,  

are t h e  longitudinal and transverse plasma pressures, I 

a 
B is t h e  magnetic f i e l d  induction vector, 

4 
b = @B i s  t h e  u n i t  vector along t h e  m a g n e t i c  f i e l d .  

W e  w i l l  consider those plasma motions for which a l l  t h e  parameters depend 

so le ly  on one coordinate, x, and on t i m e ,  t, ' Eq. (1.1) now can be rewr i t ten  

i n  t h e  form 
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... . . 

L 

W e  w i l l  seek those solut ions of t h i s  set  for which a l l  magnitudes depend so le ly  

on t h e  combination Cp(x, t )  o f  independent variablesx and t (ordinary waves, or 

Riemann waves). 

(1.2) is t h a t  B = constant. Introducing the  ve loc i ty  of wave phase motion 

Moreover, what follows froin t h e  l as t  t w o  equations of  Eq. 

X 
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r e l a t i v e  t o  the  gas throughkhe formula 

where 

X is t h e  phase ve loc i ty  of an ordinary wave, we obtain from Eq. (1.2) a 

homogeneous l i n e a r  set o f  equa t iow f o r  the  der iva t ives  of  the  unknown funct ions 
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H e r e  t h e  prime designates d i f f e ren t i a t ion  i n  terms of t he  function ~ ( x ,  t) .  

The determinant o f  t h i s  set should equal zero i n  order  f o r  there  t o  be non- 

t r i v i a l  solut ions.  Calculation of the  determinant for Eq. (1.4) reduces t o  a 

cha rac t e r i s t i c  equation, which has t h e  form 

H e r e  

Naturally enough, t h e  cha rac t e r i s t i c  Eq. (1.5) of  ordinary waves coincides L7 

with the  cha rac t e r i s t i c  equation of small amplitude waves i n  reference [Z]. 

The r e s u l t s  obtained i n * [ Z ]  are then used t o  inves t iga te  ordinary waves. 

solution of cha rac t e r i s t i c  Eq; 

The 

(1.5) r e s u l t s  i n  t h e  following values o f  a f o r  

which the  set  o f  equations of Eq. (1.4) has nont r iv ia l  solut ions 

where 



The zero root ,  a s  w e l l  as the  roots  o f  a and a define the  solutions,  

which a r e  an analogue of an entropy wave, of an Alfen wave, a s  w e l l  a s  o f  fast 
A + 9  - *  

and slow magneto-sonic waves i n  magnetohydrodynamics with i so t rop ic  pressure 

[ 5 ] .  The analogue of A l f &  waves w a s  invest igated i n  [31, and t h e  analogue of 

entropy waves can be invest igated r ead i ly  by using the  set  of equations of' 

Eq. (1.4). In  what follows, only fast  and slow magneto-sonic waves w i l l  be 

L8 invest igated i n  d e t a i l  because there  is  a physical meaning t o  entropy waves 

only a f t e r  t he  introduction of d i ss ipa t ive  mechanisms i n  t h e  set of  Chews 

Goldberger, and Low equations, and t h e  introduct.ion of the concept of  entropy 

i n  a co l l i s ion le s s  plasma with anisotropic  pressure. 

Reference [Z] obtained t h e  inequa l i t i e s  

where 

Moreover, [21 showed t h a t  t h e  root  of  the  slow magneto-sonic wave is rea l  

only when t h e  inequal i ty  i s  s a t i s f i e d  (what follows from t h e  above-described 

inequa l i t i e s  is  t h a t  t h e  a root i s  always real)  
4- 

and t h a t  t h e  regions of change i n  t h e  longitudinal pressure, i n  which t h e  root  

of t he  cha rac t e r i s t i c  Eq. (1.5) is real, can be broken down in to  three  p a r t s  
_ .  

. -.. . ~ 

(1.11) 
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I t  should be noted t h a t  when p,, > p , a so-called llhoseff i n s t a b i l i t y  
M 

develops i n  the  plasma ( t h e  Alfgn wave i n  t h i s  case has  a purely imaginary 

roo t ) .  

2 .  Invest iaat ion o f  Fast and Slow Maaneto-sonic Waves 

L e t  u s  put 

a =  a+, - 
i n  t he  set of equations o f  Eq. (1.4)* 

nates  such t h a t  a t  some a r b i t r a r y  point  t h e  condition w = B = 0, i s  sa t i s f i ed ,  

it can be sa id  t h a t  what followsk from Eq. (1.4) is 

Now, i f  we select. our' system of  coordi- 

2 

And, just as i n  C51, it can be put everywhere t h a t  w = B = 0. Moreover, 
Z 

taking t h e  plasma density p f o r  t h e  function tp(x, t) ,  and solving the  set of 

equations i n  terms of t h e  derivatives,  we obtain from FQ. (1.4) t h e  following 

set  o f  equations describing the  change of parameters i n  f a s t  and slow magneto- 

sonic waves ( a t  t h e  s a m e  time, it is easy t o  show t h a t  t he  f i f t h  equation i n  

Eq. (1.4) is  l i n e a r l y  dependent,. and i t ' c an  be discarded). 

i: (2.1) 
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H e r e  

The magnitude A i s  readi ly  converted in to  
-I-¶ - 

A s  w i l l  be seen from Eq. (2.1), i n  ordinary waves  
2 

Moreover, when B -9 0 (b 4 1) 
Y 

where 

The superscr ipt  (*I s i g n i f i e s  t h a t  t h e  functions 

C1*, C * are constants. The function g(6 )  is  i n  

It is obvious t h a t  p,, -B 0' when P ' +  0, and p -B 0 
2 

1 

2 
are taken when B = 0, and 

t h e  form shown i n  Figure 1. 

i n  t h i s  case i f  B is limited.  

Y 

Y 
B u t  when B >> Bx (b -D 0 )  we have, f o r  a fast wave, 

. Y  
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and f o r  a f a s t  wave when B >> B Y X 
> 

/ 
C Y  - - a&, /3 - 

f L +  
Now l e t  us  move on t o  the  construction of  t h e  in t eg ra l  curve f i e l d .  

(a) Fast  magneto-sonic wave 0 2  

It w i l l  be seen f r o m  Eo,. (2.3) f o r  A and f r o m  Eq. (2 .2 )  f o r  C t h a t  t h e  

sign A everywhere coincides with the  s ign of  C. Specifi.cally, it is easy t o  

show t h a t  i n  the  ranges defi-ned by the  inequa l i t i e s  of Eqs. 11.11) and (1.12) 

we have A > 0 and C > 0, f o r  any values of t he  parameter b -= Bx /B 5 1, and 

i n  t h e  range defined by t h e  inequa l i t i e s  of Eq. (1.13) t h e  value of  C can 

change s igns  ( a t  t he  s a m e  t i m e  we have A .= 0 a t  t h e  point where C = "0. 

.-I- 

-I- 

2 2  
-I- 

f 

Thus, it can be concluded t h a t  j u s t  as i n . t h e  case of magnetohydrodynamics 

with i so t rop ic  pressure [5], t he  magnetic f i e l d  i n  t h e  compression wave in- 

(2.8) 

creases, and decreases i n  the  ra refac t ion  wave. 

2 
When B -0 0 when p are small, and as w i l l  be seen from Figure 1, we have 

Y 
g ( P >  < B ? h ,  and f r o m  Eqs. (2.5) and ( 2 . 6 )  we.obta$n 

when p 2 p*, from Eqs. (2.5) and (2.6) we have, A+ = 0, where p* can be 

establ ished through t h e  equation 
2. 

/3, 
I-, f p w =  z 
2 2 

and when p -0 0 we have A -9 B /4n, C 3 B' /4n. ' Therefore a2/df l  -9 co (B f 0 ) .  + Y 

P 
Figure 1. 

f 
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1 1 3  
2 

Considering everything reviewed i n  t h e  foregoing, as 

I t  is a l s o  easy t o  show t h a t  t h e  der ivat ive dB /dp when B 
Y Y 

2 

-D 0 i s  a 

decreasing function of p. 

well as Eq. ( 2 . 7 ) ,  the  in t eg ra l  curve f i e l d  i n  the  plane (p,  B ) f o r  a fast 

magneto-sonic wave can be presented i n  t h e  form shown i n  Figure 2. In t h i s  
Y 

f igure,  curve 1 is  found through t h e  equation 

To t h e  r i g h t  of t h i s  curve, t h e  fast  magneto-sonic wave enters t h e  region o f  

"ho self i n s t ab i  1 i t y  
. 

2 

3- B 

Figure 2. 

e (b)  Slow magneto-sonic wave 
9 

A s  w i l l  be seen from Eqs. (1.9) and (2.21, A g 0 i n  a slow magneto-sonic 
I 

3 2  
wave. W e  therefore  have dB /dp z 0 i n  the  region where C 0. W e  have 

A < 0 a t  t h e  point where C = 0, and the  der ivat ive tends t o  i n f i n i t y ;  t h a t  is, 

a t  t h i s  point there  is no change i n  density with increase i n  the  magnetic f i e l d .  

W e  have dB When 

B -P 0, we have dB /dp = 0 when p < p*, and dB /dp < 0 when D *  < P < D** ,  

where p * *  is found through t h e  equation 

Y 
- 

2 
/do > 0 i n  a slow magnetic wave i n  t h e  region where C < 0. 

2 2 Y 

Y Y Y 

2 2 
W e  have dB 

have dB /dp > 0. 

it follows t h a t  t he  in tegra l  curve passing through t h e  point ( p  > p**, B 

changes t h e  sign of t h e  der ivat ive.  A t  the s a m e  t i m e ,  using Eq. (2 ,4) ,  it is 

/dp -9 co a t  t h e  point p = p * *  when B .$ 0, and when p > p * *  we 

(b -B 0 )  we have dB /dp < 0. From whence L14 2 Y 2 y  2 2 
But when By >> Bx 

2 Y Y 
= 0 )  

Y 
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easy t o  show t h a t  t h e  sign o f  &he der ivat ive w i l l  change only once. 

4 -(l-b)pl, and as a r e su l t ,  

, 
2 

When P 4 0, we have C -9 B /h7 A 
2 

- 
2 dB /dp  + -8n(1-b)CZB. Thus, when p --> O 9  we have dB /dp 4 0. This  der ivat ive 

i s  limited,  and more so i n  terms of t h e  absolute ma.gnitude than by B . The 

in tegra l  curve f i e l d  i n  t h e  plane ( p ,  B ) has the  shape shown i n  Figure 3 f o r  
Y 

a slow magneto-sonic wave. In t h i s  f igure,  t h e  dashed curve is found through 

th,e equation 

2 Y Y 

2 

7 
Y 

I-. 

To t h e  l e f t  of this curve p,, < p,, and the  slow magneto-sonic wave w i l l  become 

imaginary. I t  i s  obvious that:the postion of curve 1, and of t he  dashed l ine ,  

as shown i n  Figures 2 and 3 ,  are s ign i f i can t ly  dependent on t h e  constants C 1 
and C i n  Eq. (2.4). 2 2 

B Y 

Figure 3’. 

3 .  Some Additional Results 

Curve 1 i n  Figures 2 and 3 ,  and the  dashed curve i n  Figure 3 ,  are found 

through t h e  equations 

L15 

which; with Eq. (2.4) taken in to  consideration, have t h e  following forms, 

re spe c t  ivel y , 
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e 
J 

Jr 

2 
A s  w i l l  be seen from Eq. (3.21, when B -c 0, we have 

Y 

and, obviously, Po < p* (because p It is easy 

Eq. (3.2) curve we have dP/dB > e 0  and dp/dB 3 0 when B 

< 1/4 pM). m 

Y c ,  Y Y 

(3.2) 

> 

t o  show t h a t  f o r  t h e  

3 and t h a t  t h e  
/a 

Eq. (3.1) curve i n t e r s e c t s  t he  B = 0 a x i s  a t  t h e  point p o o  sa t i s fy ing  the  

inequal i ty  
Y 

Moreover, d i f fe ren t ia t ing  Eq. (3.1) with respect t o  p1 it can be shown t h a t  a t  

t he  point ( p o o  

magneto-sonic wave increases  more rapidly than does t h e  magnetic f i e l d  along 

t h e  Eq. (3.1) curve (curve 1 i n  Figure 3 corresponds t o  the  equation p,, = pM). 

2 2 

= 0)  t h e  magnetic f i e l d  along t h e  in tegra l  curve f o r  a slow ’ BY 

In  t h e  l i m i t  case p << B /4T and p,, << B /&‘IT equations; ,and the  e n t i r e  116  I 
analysis  fo r  t h e  fas t  magneto-sonic wave, coincide with reference C31 re su l t s .  

Specif ical ly ,  f o r  t he  f a s t  magneto-sonic wave we have’  

’ J  
4 - 4 

- -. 

where is found through Eq. (1.3); t h a t  is, wave f l i p  occurs. 

W e  have the  following f o r  t he  slow magneto-sonic wave i n  t h i s  case 
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and t h i s  does not coincide with the  equations and t h e  ana lys i s  obtained i n  . 
reference [ 3 ] .  Speci f ica l ly ,  the anomaly case is missing i n  t h i s  l i m i t  case 

and everywhere d v d p  > 0; t h a t  is, s l o w  magneto-sonic wave f l i p  occurs. I n  

the  general case we have 

Dif fe ren t ia t ing  the  c h a r a c t e r i s t i c  equation for fast and slow magneto- 

sonic waves, and after cumbersome transfbrmations, we obtain 

If t h e  Riemann wave i s  propagated almost perpendicular t o  t h e  magnetic 

f i e l d  (b 3 O), w e  have, f o r  t h e  fast  wave 
d J  ' 3  64 f - 3 0  dy - 2-Y --d+(+eL+=j 

In t h i s  case f o r  t h e  slow magneto-sonic wave we have 

A f t e r  uncomplicated transformations, using Eqs. ( 3 . 3 )  through? ( 3  .'p ) we obtain 

. 



that is, when a slow magneto-sonic wave is propagated almost perpendicular to L18 
t h e  magnetic f i e l d  i n  t h e  region i n  which t h i s  wave (p  2 p ) exists, it has 

a tendency t o  f l i p .  
I8 m 
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->. 
V 

P 

-> 
B 

?1 
b 

x 
A 

+ 9  - 
a - A  

Designations Used 

plasma veloci ty  

density 

longi tudinal  and t ransverse pressures 

magnetic induction vector  

u n i t  vector along t h e  magnetic induction vectqr 

wave phase veloci ty  ’ 

veloc i ty  of fast and slow magneto-sonic wavesg respect ively 

A l f &  wave veloci ty  
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